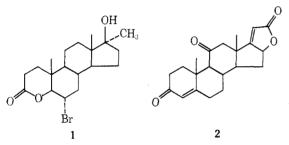
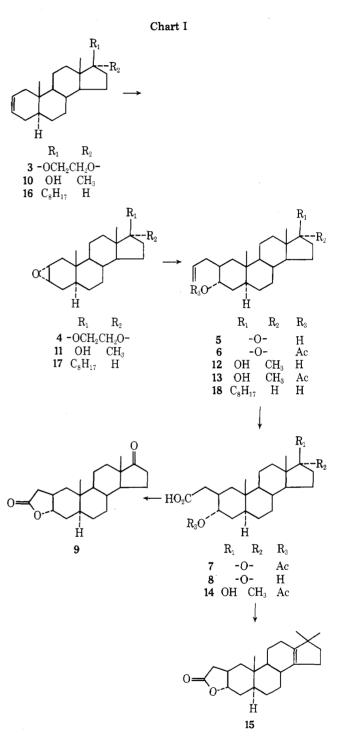
Potential Antiandrogenic Antitumor Steroidal Lactones¹


Notes

Gordon C. Wolf and Robert T. Blickenstaff*

Veterans Administration Hospital and Biochemistry Department, Indiana University School of Medicine, Indianapolis, Indiana 46202

Received July 16, 1975


Steroids exhibiting antiandrogenic activity include 17α hydroxyprogesterone caproate,² 17α -methyl-*B*-nortestosterone,³ and cyproterone acetate.⁴ These and most other antiandrogenic steroids suffer the disadvantage of also exhibiting varying degrees of progestational, estrogenic, and androgenic activity. An antiandrogenic steroid free of these undesirable activities is 6α -bromo- 17β -hydroxy- 17α methyl-4-oxa- 5α -androstan-3-one (1), having the special structural features of a 6α -bromine and a lactone ring.⁵ Lactone rings, especially α -methylene lactone rings, are found in many naturally occurring antitumor compounds,⁶ and in fact cytotoxic activity is reported for steroids having a lactone ring fused to the D ring, as in 2.⁷ Thus, the prepa-

ration of steroidal lactones takes on added significance in light of the numerous methods for converting γ -lactones into α -methylene- γ -lactones.⁸⁻¹¹

Lactones 9 and 15 were synthesized as outlined in Chart I. Thus, 2α , 3-epoxy- 5α -androstan-17-one ethylene ketal¹² (4) underwent normal ring opening¹³ with allylmagnesium bromide to produce 2β -allyl- 3α -hydroxy- 5α -androstan-17-one (5) in 88% yield. Following the method of Huffman and Sobti.¹⁴ oxidation of the acetate 6 with potassium permanganate, sodium periodate, and potassium carbonate in aqueous tert-butyl alcohol gave a 70% yield of 2-(3α -acetoxy-17-oxo- 5α -androstan- 2β -yl)acetic acid (7). Hydrolysis with potassium hydroxide in aqueous THF gave the hydroxy acid 8, which was cyclized with perchloric acid in 78% yield to $2-(3\alpha-hydroxy-17-oxo-5\alpha-androstan-2\beta-yl)acetic$ acid lactone (9). The presence of the lactone ring is clearly shown by the 1780 cm⁻¹ C=O band in the infrared spectrum.¹⁵ The shape of the 3β -H (equatorial) resonance (3.85 ppm in 5) suggests a narrow peak superimposed on a broad one,¹⁶ and perhaps the presence of some 2β -H (axial), the result of C-2 attack by the allyl Grignard reagent, although all products (5, 7, 8, and 9) gave single spots by TLC.

A similar sequence began with 17α -methyl- 5α -androst-2-en- 17β -ol (10), prepared by dehydrotosylation of 17α methyl- 5α -androstane- 3β , 17β -diol 3-tosylate in refluxing 2,6-lutidine (see Table I). *m*-Chloroperbenzoic acid produced the epoxide 11 in 76% yield. The Grignard reaction produced the 2β -allyl- 3α -hydroxy derivative 12; its acetate 13 was not purified but was used directly to prepare the acid 14. Alkaline hydrolysis followed by acid-catalyzed ring

closure gave 2-(3α -hydroxy-10,17,17-trimethyl- 5α -gon-13en- 2β -yl)acetic acid lactone (15), a result of concomitant dehydration of the 17 β -hydroxyl and rearrangement.¹⁷ Either alternate structure, Δ^{16} unrearranged or Δ^{12} rearranged, would exhibit NMR resonance in the 6.1–5.5-ppm region, which 15 does not.

Experimental Section¹⁹

 2β -Allyl- 3α -hydroxy- 5α -androstan-17-one (5). Tosylation of isoandrosterone with tosyl chloride in pyridine gave a 90% yield of 3β -tosyloxy- 5α -androstan-17-one, white crystals out of MeOH, mp 165–166 °C (lit.¹² 163–164 °C). Dehydrotosylation in refluxing lu-

Table I.	Synthesis	of a	Steroidal	Lactone
----------	-----------	------	-----------	---------

No.	Name	Yield, %	Mp, °C (solvent)	Ir, cm ⁻¹	Anal., %	
					Calcd	Found
10	17lpha-Methyl-5 $lpha$ -androst-2- en-17 eta -ol a	67	154–155 (acetone)	3330 (OH), 1150, 935, 720, 660	C 83.27 H 11.18	$\begin{array}{c} 83.24 \\ 11.22 \end{array}$
11	2α , 3-Epoxy-17 α -methyl-5 α - androstan-17 β -ol ^b	.76	206–208 (MeOH– H ₂ O)	3400 and 3330 (OH), 1155, 1076, 972, 936, 800	C 78.90 H 10.60	$78.80 \\ 10.60$
12	2β -Allyl-17 α -methyl-5 α -an- drostane- 3α ,17 β -diol ^c	54	200–202 (acetone)	3390 (OH), 1632 (C=C), 1002 and 920 (-C=CH ₂)	C 79.71 H 11.05	$79.93 \\ 10.70$
14	2- $(3\alpha$ -Acetoxy-17 β -hydroxy- 17 α -methyl- 5α -androstan- 2β -yl)acetic acid	71	216–217 (benzene– hexane)	3425 (OH), 1738 (acetate C=O), 1698 (acid C=O), 1240 (acetate C=O)	C 70.90 H 9.42	$\begin{array}{c} 71.08\\9.51\end{array}$
15	2- $(3\alpha$ -Hydroxy-10,17,17-tri- methyl- 5α -gon-13-en-2 β - yl)acetic acid lactone ^d	70	172–177 (dioxane– H ₂ O)	1795 (lactone C=O) 1210, 1199, 1139, 1059, 1000	C 80.44 H 9.82	80.31 10.01
18	2β -Allyl- 5α -cholestan- 3α -ol ^e	70	87–90 (amorphous, out of acetone)		C 84.04 H 12.28	$84.43 \\ 12.23$

^a Prepared by dehydrotosylation of 17α -methyl- 5α -androstane- 3β , 17β -diol 3-tosylate, mp 108–113 °c)lit.²⁰ 105–108 °C); compound 10 NMR & 5.60 (s, 2 H, olefinic H at C-2 and C-3), 1.20 (s, 3 H, Me), 0.85 (s, 3 H, Me), 0.77 (s, 3 H, Me). NMR & 3.12 (m, 2 H, H's on C-2 and C-3), 1.18 (s, 3 H, Me), 0.82 (s, 3 H, Me), 0.77 (s, 3 H, Me). $^{\circ}$ NMR δ 6.1–5.4 (m, 1 H, β H of allyl group), 5.10 (broad s, 1 H, γ -H of allyl group), 4.88 (broad s, 1 H, γ -H of allyl group), 3.80 (broad s, 1 H, 3β -H), 1.17 (s, 3 H, Me), 0.82 (s, 6 H, Me's). d NMR δ 4.4–4.05 (m, 1 H, 3β-H), 0.95 (s, 6 H, Me's), 0.88 (s, 3 H, Me). ^e Prepared from 2α,3-epoxycholestane, mp 106–107 °C (lit.²¹ 100–108 °C).

tidine for 2.5 h and recrystallization of the crude product from MeOH gave an 85% yield of 5α -androst-2-en-17-one, white plates, mp 108-109 °C (lit.¹² 104-111 °C). The latter was converted in 88% yield to the corresponding ethylene ketal 3, white platelets: mp 117-118 °C (lit.¹² 112-113 °C); ir 3000 (olefinic CH), 1646 (C==C), 1300, 1165, 1110, 1052 cm⁻¹. Oxidation with *m*-chloroperbenzoic acid (85%) gave a 76% yield of 2α , 3-epoxy- 5α -androstan-17-one ethylene ketal (4), recrystallized from MeOH-H₂O: mp 152-156 °C (lit.¹² 151-152 °C); ir 1300, 1170, 1050, 1007, 948, 903, 800 cm⁻¹. Allylmagnesium bromide [prepared from 94 g (0.78 mol) of allyl bromide and 24.3 g (1 g-atom) of Mg] in 500 ml of Et₂O was added to a solution of 19.95 g (0.060 mol) of 4 in 400 ml of Et_2O . The mixture was refrigerated overnight, then excess reagent was destroyed with H₂O. The ethereal layer was washed and dried (Na₂SO₄); evaporation left an oil which was hydrolyzed in MeOH (500 ml) and H₂O (200 ml) containing 10 drops of concentrated HCl at reflux for 10 min. Cooling gave crude 5, which was recrystallized in MeOH-H₂O to give an 88% yield of 5: mp 142-147 °C; ir 3460 (OH), 3060 (olefinic CH), 1712 (C=O), 1632 (C=C), 1260, 1000, 896 cm⁻¹; NMR δ 6.0–5.5 (m, 1 H, β -H in allyl group), 5.08 (broad s, 1 H, γ -H in allyl group), 4.93 (broad s, 1 H, γ -H in allyl group), 3.85 (broad s, 1 H, 3β-H), 0.85 (s, 3 H, Me), 0.83 (s, 3 H, Me).

Anal. Calcd for C₂₂H₃₄O₂: C, 79.95; H, 10.37. Found: C, 79.82; H, 10.46.

2- $(3\alpha$ -Acetoxy-17-oxo- 5α -androstan- 2β -yl)acetic Acid (7). Acetylation of 4.627 g (0.014 mol) of 5 with acetic anhydride and pyridine at room temperature, followed by the usual work-up, gave 6, an oil, which was oxidized without purification. A solution of 336 mg of KMnO₄, 29.96 g of NaIO₄, and 23.0 g of K₂CO₃ in 450 ml of H_2O was added to the oily 6 in 450 ml of t-BuOH, and the mixture was refrigerated overnight. Filtering, extraction with Et₂O, and acidification of the filtrate precipitated the crude product, which was recrystallized from benzene-petroleum ether to give 3.84 g (70%) of 7, small needles: mp 263-264 °C; ir 1720 (acetate and ketone C=O), 1695 (acid C=O), 1240 (acetate C-O), 1200 cm⁻¹

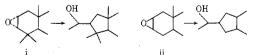
Anal. Calcd for C₂₃H₃₄O₅: C, 70.74; H, 8.78. Found: C, 70.89; H, 8.68.

2- $(3\alpha$ -Hydroxy-17-oxo- 5α -androstan- 2β -yl)acetic Acid (8). Hydrolysis of 3.84 g of 7 with KOH in aqueous THF at 45-50 °C for 24 h, acidification, extraction into HCCl₃, washing, and drying gave the crude product, which was recrystallized from benzenehexane to give 2.23 g (65%) of 8: mp 240-242 °C; ir 3460 and 3370 (OH), 1720 (ketone C=O), 1685 (acid C=O), 1250, 1020 cm⁻¹

Anal. Calcd for C21H32O4: C, 72.38; H, 9.29. Found: C, 72.51; H, 9.25

2-(3α-Hydroxy-17-oxo-5α-androstan-2β-yl)acetic Acid Lactone (9). A solution of 1.74 g of 8 in 15 ml of THF and 75 ml of benzene containing 2 drops of HClO₄ was heated to reflux for 10 min, then concentrated to 25 ml volume, cooled, and diluted with 150 ml of hexane. Overnight refrigeration produced a crude product which was recrystallized in dioxane- H_2O to give 1.24 g (78%) of 9: mp 172-173 °C; ir 1780 (lactone C=O), 1736 and 1720 (ketone

C=O), 1208, 1141, 1094, 1022, 998 cm⁻¹; NMR δ 4.4-4.0 (m, 1 H, 3β-H), 0.91 (s, 3 H, 19-Me), 0.86 (s, 3 H, 18-Me).


Anal. Calcd for C₂₁H₃₀O₃: C, 76.32; H, 9.15. Found: C, 76.10; H, 9.24

Registry No.---3, 14935-92-3; 4, 10429-04-6; 5, 57901-43-6; 7, 57901-44-7; 8, 57901-45-8; 9, 57901-46-9; 10, 3275-64-7; 11, 968-54-7: 12. 57901-47-0; 14. 57901-48-1; 15. 57901-49-2; 18. 57901-50-5; isoandrosterone, 481-29-8; allyl bromide, 106-95-6; acetic anhydride, 108-24-7; 17 α -methyl-5- α -androstane-3 β ,17 β -diol, 1921-53-5; 2α-3-epoxycholestane, 1753-61-3.

References and Notes

- (1) Supported by Veterans Administration project no. 0997-06. (2) J. Geller, A. Angrist, K. Nakao, and H. Newman, J. Am. Med. Assoc., 210, 1421 (1969). H. L. Saunders, K. Holden, and J. F. Kerwin, Steroids, 3, 687 (1964).

- J. E. Pike, J. E. Grady, J. S. Evans, and C. G. Smith, *J. Med. Chem.*, **7**, (7)
- 348 (1964). P. A. Grieco, Synthesis, 67, (1975).
- (9) P. A. Grieco and K. Hiroi, Tetrahedron Lett., 3467 (1974).
- D. Caine and G. Hasenhuetti, *Tetrahedron Lett.*, 743 (1975).
 K. Yamakawa, K. Nishitani, and T. Tominaga, *Tetrahedron Lett.*, 2829 (11)(1975)
- (12) J. Iriarte, G. Rosenkranz, and F. Sondheimer, J. Org. Chem., 20, 542 (1955).
- (13) Ring contractions are reported for both the 2α,3α-epoxide i [J. Klinot, M. Krumpolc, and A. Vystrcii, *Collect. Czech. Chem. Commun.*, 31, 3174 (1966)] and the 2β,3β-epoxide ii [P. N. Rao and J. C. Uroda, *Tet*rahedron Lett., 1117 (1964)] in reactions with methylmagnesium halide.

- (14) J. W. Huffman and R. R. Sobti, *Steroids*, **16**, 755 (1970).
 (15) L. J. Bellamy, "The Infra-red Spectra of Complex Molelcules", Wiley, New York, N.Y., 1958, p. 186.
- New York, N.Y., 1958, p 186.
 (16) N. S. Bhacca and D. H. Williams, "Applications of NMR Spectroscopy in Organic Chemistry", Holden-Day, San Francisco, Calif., 1964, p 78.
 (17) D. N. Kirk and M. P. Hartshorn, "Steroid Reaction Mechanisms", Ameri-can Elsevier, New York, N.Y., p 271. We are grateful to one of the ref-erees for emphasizing the probability of this rearrangement.
 (18) Reference 16, p 87.
 (19) Mething points were obtained on a Hoover Themas molting point space.
- (19) Melting points were obtained on a Hoover-Thomas melting point apparatus and are corrected. Infrared spectra were taken as smears or min-eral oil mulis on a Perkin-Elmer 247 spectrophotometer. Proton mag-netic resonance spectra were obtained in deuteriochloroform on a Varian A-60A spectrometer with tetramethylsilane as an internal standard. Microanalyses were performed by Galbraith Laboratories, Knoxville, Tenn.
- (20) F. A. Kincl, Chem. Ber., 93, 1043 (1960).
 (21) C. W. Shoppee, D. N. Jones, and G. H. R. Summers, J. Chem. Soc., 3100 (1957)